32 research outputs found

    Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To

    Get PDF
    The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic tructures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide bivalent-brush polymers, facilitated by "graft-through" ring-opening metathesis polymerization of a branched norbornene-PEG-chloride macromonomer followed by halide-azide exchange. The resulting bivalent-brush polymers possess azide groups at the core near a polynorbornene backbone with PEG chains extended into solution; the structure resembles a unimolecular micelle. We demonstrate copper-catalyzed azide-alkre cycloaddition (CuAAC) "click-to" coupling of a photocleavable doxorubicin (DOX)-alkyne derivative to the azide core. The CuAAC coupling was quantitative across a wide range of nanoscopic sizes (similar to 6-similar to 50 nrn); UV photolysis of the resulting DOX-loaded materials yielded free DOX that was therapeutically effective against human cancer cells

    Morphology of Immiscible Polymer Blend Thin Films Prepared by Spin-Coating

    No full text

    Azide Functional Monolayers Grafted to a Germanium Surface: Model Substrates for ATR-IR Studies of Interfacial Click Reactions

    No full text
    High-quality azide-functional substrates are prepared by a low temperature reaction of 11-bromoundecyltrichlorosilane with UV–ozone-treated germanium ATR-IR plates followed by nucleophilic substitution of the terminal bromine by addition of sodium azide. The resulting monolayer films are characterized by atomic force microscopy (AFM), contact angle analysis, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance infrared spectroscopy (ATR-IR), and ellipsometry. XPS and ellipsometric thickness data correspond well to the results of molecular model calculations confirming the formation of a densely packed azide-functional monolayer. These azide-functional substrates enable interfacial “click” reactions with complementary alkyne-functional molecules to be studied <i>in situ</i> by ATR-IR. To illustrate their potential utility for kinetic studies we show that, in the presence of copper(I) catalyst, the azide-modified surfaces react rapidly and quantitatively with 5-chloro-pentyne to form triazoles via a 1,3-dipolar cycloaddition reaction. Time-resolved ATR-IR measurements indicate that the interfacial click reaction is initially first order in azide concentration as expected from the reaction mechanism, with a rate constant of 0.034 min<sup>–1</sup>, and then transitions to apparent second order dependence, with a rate constant of 0.017 min<sup>–1</sup>/(chains/nm<sup>2</sup>), when the surface azide and triazole concentrations become similar, as predicted by Oyama et al. The reaction achieves an ultimate conversion of 50% consistent with the limit expected due to steric hindrance of the 5-chloro-pentyne reactant at the surface
    corecore